Gros Mangeur – Regional event 2019

Level 1

Énoncé

Haruhi a appris récemment que contrairement à ce que laisse penser l'expression avoir un appétit de moineau, les moineaux mangent plusieurs fois leurs poids par jour. Surprise, elle souhaite savoir, dans différents milieux (banquise, jungle, forêt tropicale, savane), combien d'animaux sont de plus gros mangeurs qu'elle.

Haruhi souhaite que vous l'aidiez en écrivant un programme lui disant combien d'animaux mangent plus qu'elle proportionnellement à leurs poids.

Entrée

L’entrée contiendra :

  • Sur la première ligne, un entier : p, poids de Haruhi.
  • Sur la ligne suivante, un entier : q, quantité de nourriture que Haruhi mange par jour.
  • Sur la ligne suivante, un entier : n, nombre d'animaux.
  • Sur les lignes suivantes, une liste de n éléments : animaux, liste des caractéristique des animaux.
    • Une ligne par élément de la liste : séparés par des espaces, un entier poids (poids de l'animal), et un entier quantite (quantité que mange l'animal par jour).

Sortie

La sortie contiendra un entier : le nombre d'animaux dont le ratio quantité mangée sur poids est supérieur ou égal à celui de Haruhi.

Contraintes

  • 1 ≤ p ≤ 10000000
  • 1 ≤ q ≤ 10000000
  • 1 ≤ n ≤ 500
  • 1 ≤ poids ≤ 10000000
  • 1 ≤ quantite ≤ 10000000

Runtime constraints

Maximum memory usage
1000 kilobytes
Maximum execution time
1000 milliseconds

Input/output samples

Sample input
68000
1800
3
187000 15000
200 900
4200 100
Sample output
2
Note

Dans cet exemple Haruhi pèse 68000g et mange 1800g de nourriture par jour. Elle a donc un ratio de $\frac{1800}{68000}$ soit environ 0.026. Le premier animal pèse 187000g et mange 15000g de nourriture par jour. Il a donc un ratio d'environs 0.080. Le deuxième animal pèse 200g et mange 900g de nourriture par jour. Il a donc un ratio de 4.5. Le première animal pèse 4200g et mange 100g de nourriture par jour. Il a donc un ratio d'environs 0.024. Il y a donc 2 animaux qui mangent plus que Haruhi par rapport à leurs poids.

Sample input
64000
1200
2
6000000 350000
1192000 34000
Sample output
2
Note

Dans cet exemple Haruhi pèse 64000g et mange 1200g de nourriture par jour. Elle a donc un ratio de $\frac{1200}{64000}$ soit environ 0.018. Le premier animal pèse 6000000g et mange 350000g de nourriture par jour. Il a donc un ratio d'environs 0.058. Le deuxième animal pèse 11920000g et mange 34000g de nourriture par jour. Il a donc un ratio de 0.028. Il y a donc 2 animaux qui mangent plus que Haruhi par rapport à leurs poids.

Submit your solution

You have to register or log in to be able to submit your solution.