Concours National d’Informatique
Algorithmique
Demi-finale Toulouse / Strasbourg

Samedi 31 Janvier 2004
1 Préambule

Bienvenue à Prologin. Ce sujet est l’épreuve écrite d’algorithmique et constitue la première des trois parties de votre demi-finale. Sa durée est de 3 heures. Par la suite, vous passerez un entretien (20 minutes) et une épreuve de programmation sur machine (4 heures).

Conseils

- Lisez bien tout le sujet avant de commencer.
- Soignez la présentation de votre copie.
- N’hésitez pas à poser des questions.
- Si vous avez fini en avance, relisez bien, ou préparez votre présentation pour l’entretien.
- N’oubliez pas de passer une bonne journée.

Remarques

- Le barème est donné à titre indicatif uniquement.
- Indiquez lisiblement vos nom et prénom, la ville où vous passez la demi-finale et la date en haut de votre copie.
- Tous les langages sont autorisés, veuillez néanmoins préciser celui que vous utilisez.
- Ce sont des humains qui lisent vos copies : laissez une marge, aérez votre code, ajoutez des commentaires (seulement lorsqu’ils sont nécessaires) et évitez au maximum les fautes d’orthographe.
- Le barème récompense les algorithmes les plus efficaces : écrivez des fonctions qui trouvent
 la solution le plus rapidement possible.
- Si vous trouvez le sujet trop simple, relisez-le, réfléchissez bien, puis dites-le nous, nous
 pouvons ajouter des questions plus difficiles.
- Écoutez bien ce que disent les organisateurs, mais ne les croyez pas!

2 Sujet

Introduction

Connaissiez vous le jeu Kapla ? Il s'agit du jeu de construction le plus simple que l'on puisse
imaginer, mais qui pourtant, offre des possibilités illimitées de construction.

Le jeu consiste en un simple baril rempli de morceaux de bois rectangulaires, tous identiques.
Vous devez faire appel à votre imagination, votre sens de l'équilibre et de l'architecture pour
réaliser avec ces éléments très simples les constructions les plus étonnantes et variées possibles.

Ayant déjà atteint les limites de votre imagination avec ce jeu, vous décidez de faire ap-
pel à vos talents de programmeur bien plus développés pour créer toutes sortes de constructions.

Votre idée est de générer des constructions aléatoirement, puis d'afficher celles qui sont
réalisables à l'écran pour laisser l'utilisateur choisir celle qui lui convient, puis la mettre en
place lui-même.

Vous avez déjà programmé le générateur, qui place des morceaux de bois aléatoirement, et
il ne vous reste que quelques fonctions à écrire pour achever votre oeuvre.

La première version de votre programme ne gère qu'un certain type de constructions : celles
où les blocs sont toujours placés dans des directions perpendiculaires ou parallèles les unes aux
autres. L'angle entre deux arêtes quelconques de deux blocs différents est toujours soit de 90
degrés, soit de 180 degrés : vous ne pouvez pas mettre de blocs en diagonale.
Question 1 (2 points)

Décrivez les structures de données nécessaires au stockage des données du problème. Vous devez d'une part définir une structure pour stocker les dimensions du bloc Kapla type dont vous vous servez, mais également stocker les coordonnées et l'orientation de chacun des blocs d'une construction.

Question 2 (3 points)

Vous souhaitez développer une interface graphique permettant entre autres de vérifier la validité d'une construction. Pour commencer, vous souhaitez vérifier quels blocs sont en contact les uns avec les autres.

On vous donne la position de deux blocs et leur orientation. Écrivez une fonction qui détermine si ces deux blocs se touchent, c'est à dire ont une surface de contact non-nulle.

Question 3 (3 points)

Vous souhaitez créer des constructions géantes avec des milliers de blocs Kapla. Un seul problème : votre chambre n'est pas si grande que cela, et votre folie des grandeurs a ses limites. Une des premières choses à faire est donc de vérifier que votre construction n'est pas trop grande pour tenir dans la pièce.

On vous donne la description d'un projet de construction valide (les coordonnées et orientations de tous les blocs), et les dimensions de votre chambre. Écrivez une fonction qui détermine si l'ensemble de votre construction peut tenir dans votre chambre. Attention : vous pouvez tourner votre construction de 90 degrés. Les côtés de tous vos kapla doivent être parallèles aux côtés de votre chambre (dont la surface au sol est un rectangle).

Question 4 (4 points)

Vous avez prévu d'écrire un algorithme qui permet de déterminer quels blocs sont en contact avec chaque bloc. (Vous le ferez à la question suivante). Sachant que chaque bloc peut être au maximum en contact avec 10 autres blocs, définissez une structure permettant de représenter cette information.

Vous décidez d'analyser cette structure pour déterminer si elle est en un ou plusieurs morceaux ou parties. Tout bloc d'une partie est relié par contact direct ou indirect (en passant par d'autres blocs), à tout autre bloc de cette partie. Par contre, aucun bloc d'une partie ne touche de bloc d'une autre partie.

Vous supposez qu'il n'y a pas de problèmes d'équilibre, donc que votre structure est stable. Écrivez une fonction qui prend en paramètre la structure que vous venez de définir, et qui détermine de combien de parties est composée la construction qu'elle décrit.
Question 5

Il est maintenant temps de remplir la structure utilisée à la question précédente. Votre construction contient 10000 kaplas. Les coordonnées x et y d’un sommet d’un kapla peuvent valoir entre 0 et 100000. Les dimensions d’un kapla ne dépassent pas 10 dans chaque direction.

- Partie 1 (5 points)

 On vous donne simplement les coordonnées et orientations de tous les blocs de la construction, et vous devez déterminer le plus rapidement possible, à quels blocs est relié chacun des blocs utilisés dans la construction.

- Partie 2 (1 point)

 Donnez un ordre de grandeur du nombre d’opérations que votre fonction va effectuer.

- Partie 3 (1 point)

 Votre ordinateur est un Pentium 4 à 1 GHz. Donnez un ordre de grandeur du temps qu’il faudra à votre fonction pour fournir le résultat.

Question 6 (Bonus)

Cette question ne rapportera des points que si vous avez répondu correctement à toutes les questions précédentes.

Vous êtes également un fan du Tangram : vous savez, ce jeu où vous disposez de différentes pièces : triangles, carré, parallélogramme, et où vous devez reconstituer avec ces pièces une forme dessinée, mais qui ne montre pas les limites entre les différentes pièces.

Plutôt que d’acheter ce jeu, vous avez décidé de rentabiliser vos kapla et de créer votre propre jeu de Tangram, le Tangram-Kapla.

Il s’agit, comme pour le jeu original, de reproduire une forme fournie. La différence ici est que vous n’avez qu’un type de pièce disponible. La forme qu’on vous fournit, est représentée sous la forme d’une grille de 12 par 6 cases, noires ou blanches. Vous devez reproduire la figure en utilisant des blocs de kapla, placés à plat, dans le sens de la longueur, ou de la largeur. Un kapla correspond à un rectangle de 3 cases par 1, sur la grille.
Vous avez bien sûr réalisé un générateur automatique de grilles, mais vous ne voulez pas chercher pour rien, et avez décidé de faire un programme de vérification.

Ecrivez une fonction qui prend une grille remplie en argument, et qui détermine s’il est possible de créer la forme noircie, à l’aide de lapla.

Si vous avez répondu à toutes les questions, relisez bien. Si vous êtes sûr que tout est bon, et qu’il vous reste encore du temps, demandez à un organisateur de vous donner une question supplémentaire.

(+1 point présentation)